

 Navigation

 	
 next

 	python-amazon-product-api 0.3-dev documentation

python-amazon-product-api

The Amazon Product Advertising API [https://affiliate-program.amazon.com/gp/advertising/api/detail/main.html] provides programmatic access to Amazon’s
product selection and discovery functionality. It has search and look up
capabilities, provides information on products and other features such as
Reviews, Similar Products and New and Used listings.
python-amazon-product-api offers a light-weight access to the latest
version of the API without getting in your way.

	Installation

	Getting started
	Basic setup

	Your first API request

	Dealing with errors

	Operations
	Lookup and search operations

	Cart operations

	Common request parameters

	Result processing

	Result pagination
	Paginator types

	Supported methods

	Error handling
	Occurring exceptions

	Configuration
	Using files

	Using config dict

	Environment variables

	Order of precedence

	More advanced uses
	Using a different API version

	Use your own XML parsing library

	Caching responses

	Developer FAQ
	I read the API docs but I can’t manage to get this to work

	Which locale should I use and why is this important?

	Can I use this wrapper on Google App Engine (GAE)?

	I keep getting InvalidParameterValue errors. What am I doing wrong?

	Why yet another implementation?

	I found a bug! What do I do now?

	How to contribute
	Setting up a development environment

	Running the Tests

	Changes

	License

 Copyright 2017-2009, Sebastian Rahlf.
 Last updated on Feb 05, 2017.
 Created using Sphinx 1.3.5.

 Navigation

 	
 next

 	
 previous |

 	python-amazon-product-api 0.3-dev documentation

Installation

The easiest way to get the Python bindings is using pip [http://www.pip-installer.org/].

pip install python-amazon-product-api

Alternatively ou can download the .tgz file from Cheeseshop [http://pypi.python.org/pypi/python-amazon-product-api/], untar it and
run:

python setup.py install

You’ll also find binaries there to make your life easier if you happen to use
a Windows system.

The development version is available on bitbucket.org [http://bitbucket.org/basti/python-amazon-product-api/]. Feel free to clone the
repository and add your own features (see also How to contribute).

hg clone http://bitbucket.org/basti/python-amazon-product-api/

If you like what you see, drop me a line at basti at redtoad dot de.

 Copyright 2017-2009, Sebastian Rahlf.
 Last updated on Feb 05, 2017.
 Created using Sphinx 1.3.5.

 Navigation

 	
 next

 	
 previous |

 	python-amazon-product-api 0.3-dev documentation

Getting started

In order to use this API you’ll obviously need an Amazon Associates Web Service
account for which you must register with Amazon [https://affiliate-program.amazon.com/gp/advertising/api/detail/your-account.html]. Each account contains an
AWSAccessKeyId and a SecretKey. As of API version 2011-08-01 you will also
need to register for an AssociateTag [https://affiliate-program.amazon.com/].

Note

It is assumed that you know what the Amazon Product Advertising API
does. If you are unsure, read their developer guide [http://docs.amazonwebservices.com/AWSECommerceService/2011-08-01/DG/Welcome.html?r=4324] (particularly the
section Introduction to the Product Advertising API.

Basic setup

If you haven’t done so already, create a file ~/.amazon-product-api
(C:\Users\You\.amazon-product-api if you’re on Windows) and paste the
following content into it:

[Credentials]
access_key = <your access key>
secret_key = <your secret key>
associate_tag = <your associate id>

Of course, you’ll need to fill in the appropriate values! More information on
how to configure the module can be found later on.

Your first API request

Here is an example how to use the API to search for books of a certain
publisher.

api = API(locale='us')
items = api.item_search('Books', Publisher="O'Reilly")

So what happens here? First you initialised your API wrapper to use Amazon.com.
There are, of course, other locales available [http://docs.amazonwebservices.com/AWSECommerceService/latest/DG/CHAP_LocaleConsiderations.html] should you wish to use a
different one. For instance, locale='de' will cause requests to be sent to
Amazon.de (Germany).

Afterwards you called the API operation ItemSearch to get a list of all books
that where published by O’Reilly. Now method item_search does several
things at once for you:

	It turns all your parameters into a validly signed URL and sends a request.

	The returned XML document is parsed and if it contains any error message,
the appropriate Python exception is raised (see Dealing with errors).

	Amazon itself provides their results spread over several pages. If you were
to do this manually you would have to make several calls. To make things
easier for you item_search() will iterate over all availabe results
(see Result pagination for more information).

You can now iterate over the items and will get a number of parsed XML
nodes (by default and if available lxml.objectify [http://lxml.de/objectify.html] is used). With it you can
access all elements and attributes in a Pythonic way:

get all books from result set and
print author and title
for book in items:
 print '%s: "%s"' % (book.ItemAttributes.Author,
 book.ItemAttributes.Title)

Please refer to the lxml.objectify [http://lxml.de/objectify.html] documentation for more details. If you
cannot/will not use lxml, see Result processing for alternatives.

You can find more API operations later in Operations.

Dealing with errors

One of the advatages of using this wrapper is that all error messages from
Amazon will raise Python exceptions with meaningful messages.

try:
 node = api.similarity_lookup('0451462009', '0718155157')
 # ...
except NoSimilarityForASIN, e:
 print 'There is no book similar to %s!' % e.args[0]
except AWSError, e:
 print 'Amazon complained about yout request!'
 print e.code
 print e.msg

A list of exceptions can be found in Error handling.

 Copyright 2017-2009, Sebastian Rahlf.
 Last updated on Feb 05, 2017.
 Created using Sphinx 1.3.5.

 Navigation

 	
 next

 	
 previous |

 	python-amazon-product-api 0.3-dev documentation

Operations

All functionality of the Amazon Product Advertising API is provided by
operations each of which will accept a number of different parameters both
required and optional. A special signed URL has to be constructed from which the
result of an operation can be retrieved as a XML document.

Building the individual URL can be quite cumbersome when done repeatedly by
hand. That’s the main reason why this module came into being. Any operation
listed in the API documentation [http://docs.amazonwebservices.com/AWSECommerceService/latest/DG/CHAP_OperationListAlphabetical.html] can thus be called with call().
To look up information on an article, one could for instance call ItemLookup [http://docs.amazonwebservices.com/AWSECommerceService/latest/DG/ItemLookup.html]
in the following way:

api.call(Operation='ItemLookup', ItemId='B00008OE6I')

However, this module offers a few convenience methods which can make your life
easier by producing clearer error messages or even paginating over the returned results. For the above call you would simply use
item_lookup().

Below is a list of all the operations which are specifically supported in this
module.

Lookup and search operations

These operations are the heart and soul of the API. With these you can search
for products and retreive their data.

	
API.item_search(searchindex, **query)

	
Changed in version 2011-08-01: You can only fetch up to 10 result pages (instead of 400).

The item_search() operation returns items that satisfy the search
criteria, including one or more search indices.

item_search() returns up to ten search results at a time. When
condition equals “All,” item_search() returns up to three
offers per condition (if they exist), for example, three new, three
used, three refurbished, and three collectible items. Or, for example,
if there are no collectible or refurbished offers, item_search()
returns three new and three used offers.

Because there are thousands of items in each search index,
item_search() requires that you specify the value for at least one
parameter in addition to a search index. The additional parameter value
must reference items within the specified search index. For example,
you might specify a browse node (BrowseNode is an
item_search() parameter), Harry Potter Books, within the Books
product category. You would not get results, for example, if you
specified the search index to be Automotive and the browse node to be
Harry Potter Books. In this case, the parameter value is not associated
with the search index value.

The ItemPage parameter enables you to return a specified page of
results. The maximum ItemPage number that can be returned is 400.
An error is returned if you try to access higher numbered pages. If you
do not include ItemPage in your request, the first page will be
returned by default. There can be up to ten items per page (see
Result pagination for more details).

item_search() is the operation that is used most often in
requests. In general, when trying to find an item for sale, you use this
operation.

Examples:

	Use the search index, Toys, and the parameter, Keywords, to return
information about all toy rockets sold in by Amazon.

>>> api.item_search('Toys', Keywords='Rocket')

	Use a blended search to look through multiple search indices for
items that have “Mustang” in their name or description. A blended
search looks through multiple search indices at the same time.

>>> api.item_search('Blended', Keywords='Mustang')

	Use the Availability parameter to only return shirts that are
available:

>>> api.item_search('Apparel', Condition='All',
... Availability='Available', Keywords='Shirt')

	Set the search index to MusicTracks and Keywords to the title
of a song to find a song title.

	Use the BrowseNodes response group to find the browse node of an
item.

	Use the Variations response group and the BrowseNode parameter
to find all of the variations of a parent browse node.

	
API.item_lookup(id, [id2, ...,]**extra)

	Given an item identifier, the item_lookup() operation
returns some or all of the item attributes, depending on the response
group specified in the request. By default, item_lookup() returns
an item’s ASIN, Manufacturer, ProductGroup, and Title of the item.

>>> api = API(locale='uk')
>>> result = api.item_lookup('B006H3MIV8')
>>> for item in result.Items.Item:
... print '%s (%s)' % (item.ItemAttributes.Title, item.ASIN)
...
Chimes of Freedom: The Songs of Bob Dylan (B006H3MIV8)

item_lookup() supports many response groups, so you can retrieve
many different kinds of product information, called item attributes,
including product reviews, variations, similar products, pricing,
availability, images of products, accessories, and other information.

To look up more than one item at a time, you can pass several
identifiers at once.

>>> res = api.item_lookup('B000002O4S', 'B000002O6R', 'B0000014RN')

Note

The parameter support varies by locale used.

Results spanning multiple pages will all be subsequently retrieved
when you iterate over them. See Result pagination for more details.

Examples:

	The following request returns the information associated with ItemId
B00008OE6I.

>>> api.item_lookup('B00008OE6I')

	The following request returns an offer for a refurbished item that is
not sold by Amazon

>>> api.item_lookup('B00008OE6I',
... ResponseGroup='OfferFull', Condition='All')

	In the following request, the ItemId is an SKU, which requires that
you also specify the IdType.

>>> api.item_lookup([SKU], IdType='SKU')

	If you use a UPC as ItemId, you also need to specify SearchIndex and
ItemType.

>>> api.item_lookup([UPC], SearchIndex='Books', IdType='UPC')

In the following request, the ItemId is an EAN, which requires that you
also specify the SearchIndex and ItemType.

>>> api.item_lookup([EAN], IdType='EAN')

Tips:

	Use the BrowseNodes response group to find the browse node of an
item.

	Use the Tracks response group to find the track, title, and
number for each track on each CD in the response.

	Use the Similarities response group to find the ASIN and Title
for similar products returned in the response.

	Use the Reviews response group to find reviews written by
customers about an item, and the total number of reviews for each
item in the response.

	Use the OfferSummary response group to find the number of offer
listings and the lowest price for each of the offer listing condition
classes, including New, Used, Collectible, and
Refurbished.

	Use the Accessories response group to find the a list of
accessory product ASINs and Titles for each product in the response
that has accessories.

	The following requests an iframe that contains customer reviews for
the specified item.

>>> api.item_lookup('0316067938', ResponseGroup='Reviews',
... TruncateReviewsAt=256, IncludeReviewsSummary=False)

	
API.similarity_lookup(id, [id2, ...,]**extra)

	The similarity_lookup() operation returns up to ten products per
page that are similar to one or more items specified in the request.
This operation is typically used to pique a customer’s interest in
buying something similar to what they’ve already ordered.

If you specify more than one item, similarity_lookup() returns
the intersection of similar items each item would return separately.
Alternatively, you can use the SimilarityType parameter to return the
union of items that are similar to any of the specified items. A
maximum of ten similar items are returned; the operation does not
return additional pages of similar items. If there are more than ten
similar items, running the same request can result in different answers
because the ten that are included in the response are picked randomly.
The results are picked randomly only when you specify multiple items
and the results include more than ten similar items.

When you specify multiple items, it is possible for there to be no
intersection of similar items. In this case, the operation raises the
exception NoSimilarityForASIN.

This result is very often the case if the items belong to different
search indices. The error can occur, however, even when the items share
the same search index.

Similarity is a measurement of similar items purchased, that is,
customers who bought X also bought Y and Z. It is not a measure, for
example, of items viewed, that is, customers who viewed X also viewed Y
and Z.

Items returned can be filtered by:

	Condition

	Describes the status of an item. Valid values are All, New
(default), Used, Refurbished or Collectible. When the
Availability parameter is set to “Available,” the Condition
parameter cannot be set to “New.”

Examples:

	Return items that are similar to a list of items.

>>> api.similarity_lookup('ASIN1', 'ASIN2', 'ASIN3')

This request returns the intersection of the similarities for each
ASIN. The response to this request is shown in Response to Sample
Request.

Return up to ten items that are similar to any of the ASINs
specified.

>>> api.similarity_lookup('ASIN1', 'ASIN2', 'ASIN3',
... SimilarityType='Random')

This request returns the union of items that are similar to all of the
ASINs specified. Only ten items can be returned and those are picked
randomly from all of the similar items. Repeating the operation could
produce different results.

	Parameters:	ids – One or more ASINs you want to look up. You can specify up
to ten Ids.

Amazon als structures their products in categories, so called BrowseNodes,
each with its unique ID. You can find a list of these nodes here [http://docs.amazonwebservices.com/AWSECommerceService/latest/DG/index.html?BrowseNodeIDs.html>`_.].

	
API.browse_node_lookup(browse_node_id, response_group=None, **params)

	Given a browse_node_id, this method returns the specified browse
node’s name, children, and ancestors. The names and browse node IDs of
the children and ancestor browse nodes are also returned.
browse_node_lookup() enables you to traverse the browse node
hierarchy to find a browse node.

As you traverse down the hierarchy, you refine your search and limit
the number of items returned. For example, you might traverse the
following hierarchy: Books>Children's Books>Science, to select out
of all the science books offered by Amazon only those that are
appropriate for children:

>>> api = API(locale='us')
>>> node_id = 3207 # Books > Children's Books > Science
>>> result = api.browse_node_lookup(node_id)
>>> for child in result.BrowseNodes.BrowseNode.Children.BrowseNode:
... print '%s (%sa)' % (child.Name, child.BrowseNodeId)
...
Agriculture (3208)
Anatomy & Physiology (3209)
Astronomy & Space (3210)
Biology (3214)
Botany (3215)
Chemistry (3216)
Earth Sciences (3217)
Electricity & Electronics (3220)
Engineering (16244041)
Environment & Ecology (3221)
Experiments & Projects (3224)
Geography (16244051)
Health (3230)
Heavy Machinery (3249)
How Things Work (3250)
Inventions & Inventors (16244711)
Light & Sound (16244701)
Math (3253)
Mystery & Wonders (15356851)
Nature (3261)
Physics (3283)
Social Science (3143)
Zoology (3301)

Returning the items associated with children’s science books produces a
much more targeted result than a search based at the level of books.

Alternatively, by traversing up the browse node tree, you can determine
the root category of an item. You might do that, for example, to return
the top seller of the root product category using the TopSellers
response group in an browse_node_lookup() request:

>>> # extract all category roots
>>> result = api.item_lookup('031603438X', # Keith Richards: Life
... ResponseGroup='BrowseNodes')
>>> root_ids = result.xpath(
... '//aws:BrowseNode[aws:IsCategoryRoot=1]/aws:BrowseNodeId',
... namespaces={'aws': result.nsmap.get(None)})

>>> # TopSellers for first category
>>> result = api.browse_node_lookup(root_ids[0], 'TopSellers')
>>> for item in result.BrowseNodes.BrowseNode.TopSellers.TopSeller:
... print item.ASIN, item.Title
...
B004LLHE62 Ghost in the Polka Dot Bikini (A Ghost of Granny Apples Mystery)
B004LROUNG The Litigators
B005K0HDGE 11/22/63 [Enhanced eBook]
B004W2UBYW Steve Jobs
1419702238 Diary of a Wimpy Kid: Cabin Fever
1451648537 Steve Jobs
B003YL4LNY Inheritance (The Inheritance Cycle)
0375856110 Inheritance (The Inheritance Cycle)
B005IGVS6Q Unfinished Business
B005O548QI Last Breath

You can use browse_node_lookup() iteratively to navigate through
the browse node hierarchy to reach the node that most appropriately
suits your search. Then you can use the browse node ID in an
item_search() request. This response would be far more targeted
than, for example, searching through all of the browse nodes in a
search index.

A list of BrowseNodes can be found here:
http://docs.amazonwebservices.com/AWSECommerceService/latest/DG/index.html?BrowseNodeIDs.html

	Parameters:	
	browse_node_id (positive int) – A positive integer assigned by Amazon that
uniquely identifies a product category.

	response_group (str) – Specifies the types of values to return. You can
specify multiple response groups in one request by separating them
with commas. Valid Values are BrowseNodeInfo (default),
MostGifted, NewReleases, MostWishedFor, TopSellers.

	params – This can be any (or none) of the
Common request parameters.

Cart operations

Since the Amazon Product Advertising API is all about generating revenue for
Amazon, of course, there is also the possibility to create remote shopping
baskets. The operations below are staight-forward and need little explanation.
You may, however, have a look at the amazonproduct.contrib.cart module
which provides a generic Cart class to deal
with the responses from these operations.

	
API.cart_create(items, **params)

	cart_create() enables you to create a remote shopping cart. A
shopping cart is the metaphor used by most e-commerce solutions. It is a
temporary data storage structure that resides on Amazon servers. The
structure contains the items a customer wants to buy. In Product
Advertising API, the shopping cart is considered remote because it is
hosted by Amazon servers. In this way, the cart is remote to the
vendor’s web site where the customer views and selects the items they
want to purchase.

Once you add an item to a cart by specifying the item’s ListItemId and
ASIN, or OfferListingId, the item is assigned a CartItemId and
accessible only by that value. That is, in subsequent requests, an item
in a cart cannot be accessed by its ListItemId and ASIN, or
OfferListingId. CartItemId is returned by cart_create(),
cart_get(), and cart_add().

Because the contents of a cart can change for different reasons, such
as item availability, you should not keep a copy of a cart locally.
Instead, use the other cart operations to modify the cart contents. For
example, to retrieve contents of the cart, which are represented by
CartItemIds, use cart_get().

Available products are added as cart items. Unavailable items, for
example, items out of stock, discontinued, or future releases, are
added as SaveForLaterItems. No error is generated. The Amazon
database changes regularly. You may find a product with an offer listing
ID but by the time the item is added to the cart the product is no
longer available. The checkout page in the Order Pipeline clearly lists
items that are available and those that are SaveForLaterItems.

It is impossible to create an empty shopping cart. You have to add at
least one item to a shopping cart using a single cart_create()
request. You can add specific quantities (up to 999) of each item.

cart_create() can be used only once in the life cycle of a cart.
To modify the contents of the cart, use one of the other cart
operations.

Carts cannot be deleted. They expire automatically after being unused
for 7 days. The lifespan of a cart restarts, however, every time a cart
is modified. In this way, a cart can last for more than 7 days. If, for
example, on day 6, the customer modifies a cart, the 7 day countdown
starts over.

Changed in version 0.2.8: Will raise ParameterOutOfRange rather than
ValueError.

	
API.cart_get(cart_id, hmac, **params)

	The cart_get() operation enables you to retrieve the IDs,
quantities, and prices of all of the items, including SavedForLater
items in a remote shopping cart.

Because the contents of a cart can change for different reasons, such
as availability, you should not keep a copy of a cart locally. Instead,
use cart_get() to retrieve the items in a remote shopping cart.

To retrieve the items in a cart, you must specify the cart using the
CartId and HMAC values, which are returned in the
cart_create() operation. A value similar to HMAC,
URLEncodedHMAC, is also returned. This value is the URL encoded
version of the HMAC. This encoding is necessary because some
characters, such as + and /, cannot be included in a URL. Rather
than encoding the HMAC yourself, use the URLEncodedHMAC value
for the HMAC parameter.

cart_get() does not work after the customer has used the
PurchaseURL to either purchase the items or merge them with the
items in their Amazon cart.

If the associated cart_create() request specified an
AssociateTag, all cart_get() requests must also include a
value for AssociateTag otherwise the request will fail.

	
API.cart_add(cart_id, hmac, items, **params)

	The cart_add() operation enables you to add items to an existing
remote shopping cart. cart_add() can only be used to place a new
item in a shopping cart. It cannot be used to increase the quantity of
an item already in the cart. If you would like to increase the quantity
of an item that is already in the cart, you must use the
cart_modify() operation.

You add an item to a cart by specifying the item’s OfferListingId,
or ASIN and ListItemId. Once in a cart, an item can only be
identified by its CartItemId. That is, an item in a cart cannot be
accessed by its ASIN or OfferListingId. CartItemId is returned
by cart_create(), cart_get(), and cart_add().

To add items to a cart, you must specify the cart using the CartId
and HMAC values, which are returned by the cart_create()
operation.

If the associated cart_create() request specified an AssociateTag,
all cart_add() requests must also include a value for Associate
Tag otherwise the request will fail.

Note

Some manufacturers have a minimum advertised price (MAP) that
can be displayed on Amazon’s retail web site. In these cases, when
performing a Cart operation, the MAP Is returned instead of the
actual price. The only way to see the actual price is to add the
item to a remote shopping cart and follow the PurchaseURL. The
actual price will be the MAP or lower.

Changed in version 0.2.8: Will raise ParameterOutOfRange rather than
ValueError.

	
API.cart_modify(cart_id, hmac, item_ids, **params)

	The cart_modify() operation enables you to change the quantity of
items that are already in a remote shopping cart and move items from
the active area of a cart to the SaveForLater area or the reverse.

To modify the number of items in a cart, you must specify the cart
using the CartId and HMAC values that are returned in the
cart_create() operation. A value similar to HMAC,
URLEncodedHMAC, is also returned. This value is the URL encoded
version of the HMAC. This encoding is necessary because some characters,
such as + and /, cannot be included in a URL. Rather than
encoding the HMAC yourself, use the URLEncodedHMAC value for the
HMAC parameter.

You can use cart_modify() to modify the number of items in a
remote shopping cart by setting the value of the Quantity parameter
appropriately. You can eliminate an item from a cart by setting the
value of the Quantity parameter to zero. Or, you can double the number
of a particular item in the cart by doubling its Quantity. You cannot,
however, use cart_modify() to add new items to a cart.

If the associated cart_create() request specified an
AssociateTag, all cart_modify() requests must also include a value
for Associate Tag otherwise the request will fail.

Changed in version 0.2.8: Will raise ParameterOutOfRange or
MissingParameters rather than ValueError.

	
API.cart_clear(cart_id, hmac, **params)

	The cart_clear() operation enables you to remove all of the items
in a remote shopping cart, including SavedForLater items. To remove
only some of the items in a cart or to reduce the quantity of one or
more items, use cart_modify().

To delete all of the items from a remote shopping cart, you must
specify the cart using the CartId and HMAC values, which are
returned by the cart_create() operation. A value similar to the
HMAC, URLEncodedHMAC, is also returned. This value is the URL
encoded version of the HMAC. This encoding is necessary because
some characters, such as + and /, cannot be included in a URL.
Rather than encoding the HMAC yourself, use the U``RLEncodedHMAC``
value for the HMAC parameter.

cart_clear() does not work after the customer has used the
PurchaseURL to either purchase the items or merge them with the
items in their Amazon cart.

Carts exist even though they have been emptied. The lifespan of a cart
is 7 days since the last time it was acted upon. For example, if a cart
created 6 days ago is modified, the cart lifespan is reset to 7 days.

Common request parameters

There are a number of optional keyword parameters which you can use to any of
the afore mentioned operations.

	ContentType

	Specifies the format of the content in the response. Generally,
ContentType should only be changed for REST requests when the
Style parameter is set to an XSLT stylesheet. For example, to transform
your Product Advertising API response into HTML, set ContentType to
text/html. See Style.

Valid Value: text/xml (default), text/html

	MarketplaceDomain

	Specifies the Marketplace Domain where the request will be directed. For
more information, see
http://docs.amazonwebservices.com/AWSECommerceService/latest/DG/index.html?MarketplaceDomainParameter.html.

	MerchantId

	An optional parameter that can be used to filter search results and offer
listings to only include items sold by Amazon. By default, the API will
return items sold by various merchants including Amazon.

	Style

	Controls the format of the data returned in Product Advertising API
responses. Style only pertains to REST requests. Set this parameter to
XML (default), to generate a pure XML response. Set this parameter to
the URL of an XSLT stylesheet to have Product Advertising API transform the
XML response. See ContentType.

Valid Values: URL of an XSLT stylesheet

	Validate

	Prevents an operation from executing. Set the Validate parameter to
True to test your request without actually executing it. When present,
Validate must equal True; the default value is False. If a
request is not actually executed (Validate=True), only a subset of the
errors for a request may be returned because some errors (for example,
NoExactMatchesFound) are only generated during the execution of a
request.

Valid Values: True, False (default)

	Version

	The version of the Product Advertising API software and WSDL to use. By
default, the 2005-10-05 version is used. Alternately, specify a
software version, such as 2011-08-01. For a list of valid version
numbers, refer to the Product Advertising API Release Notes [http://aws.amazon.com/releasenotes]. Note that
the latest version of Product Advertising API is not used by default.

Valid Values: Valid WSDL version date, for example, 2011-08-01.
Default: 2005-10-05

Note

If you want to adjust your Version more easily, have a look
at Using a different API version.

	XMLEscaping

	Specifies whether responses are XML-encoded in a single pass or a double
pass. By default, XMLEscaping is Single, and Product Advertising
API responses are encoded only once in XML. For example, if the response
data includes an ampersand character (&), the character is returned in its
regular XML encoding (&). If XMLEscaping is Double, the same
ampersand character is XML-encoded twice (&). The Double value for
XMLEscaping is useful in some clients, such as PHP, that do not decode
text within XML elements.

Valid Values: Single (default), Double

Please refer to
http://docs.amazonwebservices.com/AWSECommerceService/latest/DG/index.html?CommonRequestParameters.html
for an up-to-date list of parameters.

 Copyright 2017-2009, Sebastian Rahlf.
 Last updated on Feb 05, 2017.
 Created using Sphinx 1.3.5.

 Navigation

 	
 next

 	
 previous |

 	python-amazon-product-api 0.3-dev documentation

Result processing

By default this module uses lxml.objectify [http://lxml.de/objectify.html] to parse all XML responses it receives from Amazon.
However, this will only work if lxml is actually installed.

On some systems like Google App Engine lxml cannot be installed. Therefore there are a number of fallbacks which will be tried in the following order:

	amazonproduct.processors.objectify.Processor

	amazonproduct.processors.etree.Processor

There is also a processor using minidom.

	amazonproduct.processors.minidom.Processor

Note

If you want to use your own parser have a look at amazonproduct.processors.BaseProcessor and amazonproduct.processors.BaseResultPaginator

 Copyright 2017-2009, Sebastian Rahlf.
 Last updated on Feb 05, 2017.
 Created using Sphinx 1.3.5.

 Navigation

 	
 next

 	
 previous |

 	python-amazon-product-api 0.3-dev documentation

Result pagination

New in version 0.2.5.

Changed in version 0.2.6.

One of the main advantages of this wrapper is that it provides automatic pagination of results.
Rather than having to make 10 calls to get all available pages, you can simply iterate over the paginator instance that some operations return.

>>> api = API(locale='de')
>>> results = api.item_search('Books',
... Publisher='Galileo Press', Sort='salesrank')
>>> results
<amazonproduct.processors._lxml.SearchPaginator object at 0x253af10>

The result is a SearchPaginator instance, which can be queried and iterated over

>>> results.results
286
>>> results.pages
29
>>> for item in results:
... print item.ASIN
...
B004C04AOG
B00K1ZG9V8
B00SWJNV2K
1408855658
1408845644
1783705485
3551551677
...

New pages are loaded from Amazon (up to a maximum of 10 pages) as they are
required.

If you don’t want to use pagination, you can disable this feature by passing paginate=False.

>>> results = api.item_search('Books',
... Publisher='Galileo Press', Sort='salesrank',
... ItemPage=3, paginate=False)
>>> results
<Element {http://webservices.amazon.com/AWSECommerceService/2013-08-01}ItemSearchResponse at 0xb5a845cc>
>>> for item in results.Items.Item: # now we have a normal result page!
... print item.ASIN
...
B00PQ63SUC
B013STZW4S
B00VJPQ9EG
1783296038
1455524182
1608876861
3551551936
3551559015
3833230347
...

Note

Now we have a single result page

Paginator types

By default the items will be paginated over. However, there are other pagination methods available:

	ITEMS_PAGINATOR (default) - iterates over all items (default)

	RELATEDITEMS_PAGINATOR - iterates over all related items provided

	False - no pagination thank you very much

All paginator classes inherit from BaseResultPaginator:

	
class amazonproduct.processors.BaseResultPaginator(fun, *args, **kwargs)

	Wrapper class for paginated results. This class will call the passed
function iteratively until either the specified limit is reached or all
result pages, which can be retrieved, are fetched.

Note

Amazon does put a rather restrictive limit on pagination. Don’t
expect to be able to retrieve all result pages!

A result paginator has the following attributes:

	pages (same as len(<paginator>))

	Number of total pages. This may differ from the number of pages
actually iterated over because of limits either imposed by Amazon or
yourself (using limit).

	results

	Number of total results. This may differ from the number of results
actually retrievable because Amazon generally limits pagination to ten
pages.

	current

	Number of result page retrieved last.

Supported methods

The following API methods support pagination:

	item_lookup()

	item_search()

 Copyright 2017-2009, Sebastian Rahlf.
 Last updated on Feb 05, 2017.
 Created using Sphinx 1.3.5.

 Navigation

 	
 next

 	
 previous |

 	python-amazon-product-api 0.3-dev documentation

Error handling

The most basic error is AWSError, which has attributes code and
message. Almost all operations raise specialised exceptions.

	
exception amazonproduct.errors.AWSError(*args, **kwargs)

	Generic AWS error message with the following attributes:

	code

	The Amazon error code (e.g. AWS.InvalidEnumeratedParameter)

	msg

	The original error message from Amazon

	xml

	XML returned from Amazon as processed by the API’s result processor

You can (and should) still pass additional arguments to derived exceptions
which (as with BaseException) will be stored in args.

Sometimes you may still want to access the original response. An example:

try:
 result = api.item_lookup(
 '644209004461', '009800895250', '301357583001', IdType='UPC')
except InvalidParameterValue, e:
 print 'There was an invalid ItemId!' # '301357583001'
 result = e.xml

Although UPC 301357583001 will cause an error to be rawised, you can
retrieve the parsed response (here result is simply replaced with
e.xml) and continue working on it as if nothing has happened.

Occurring exceptions

	
exception amazonproduct.errors.CartInfoMismatch(*args, **kwargs)

	Your request contains an invalid AssociateTag, CartId and HMAC combination.
Please verify the AssociateTag, CartId, HMAC and retry.

Remember that all Cart operations must pass in the CartId and HMAC that were
returned to you during the CartCreate operation.

	
exception amazonproduct.errors.DeprecatedOperation(*args, **kwargs)

	The specified feature (operation) is deprecated.

	
exception amazonproduct.errors.InternalError(*args, **kwargs)

	Amazon encountered an internal error. Please try again.

	
exception amazonproduct.errors.InvalidCartId(*args, **kwargs)

	Your request contains an invalid value for CartId. Please check your CartId
and retry your request.

	
exception amazonproduct.errors.InvalidCartItem(*args, **kwargs)

	The item you specified, ???, is not eligible to be added to the cart. Check
the item’s availability to make sure it is available.

	
exception amazonproduct.errors.InvalidClientTokenId(*args, **kwargs)

	The AWS Access Key Id you provided does not exist in Amazon’s records.

	
exception amazonproduct.errors.InvalidListType(*args, **kwargs)

	The value you specified for ListType is invalid. Valid values include:
BabyRegistry, Listmania, WeddingRegistry, WishList.

	
exception amazonproduct.errors.InvalidOperation(*args, **kwargs)

	The specified feature (operation) is invalid.

	
exception amazonproduct.errors.InvalidParameterCombination(*args, **kwargs)

	Your request contained a restricted parameter combination.

	
exception amazonproduct.errors.InvalidParameterValue(*args, **kwargs)

	The specified ItemId parameter is invalid. Please change this value and
retry your request.

	
exception amazonproduct.errors.InvalidResponseGroup(*args, **kwargs)

	The specified ResponseGroup parameter is invalid. Valid response groups for
ItemLookup requests include:

Accessories, AlternateVersions, BrowseNodes, Collections, EditorialReview,
Images, ItemAttributes, ItemIds, Large, ListmaniaLists, Medium,
MerchantItemAttributes, OfferFull, OfferListings, OfferSummary, Offers,
PromotionDetails, PromotionSummary, PromotionalTag, RelatedItems, Request,
Reviews, SalesRank, SearchBins, SearchInside, ShippingCharges,
Similarities, Small, Subjects, Tags, TagsSummary, Tracks, VariationImages,
VariationMatrix, VariationMinimum, VariationOffers, VariationSummary,
Variations.

	
exception amazonproduct.errors.InvalidSearchIndex(*args, **kwargs)

	The value specified for SearchIndex is invalid. Valid values include:

All, Apparel, Automotive, Baby, Beauty, Blended, Books, Classical, DVD,
Electronics, ForeignBooks, HealthPersonalCare, HomeGarden, HomeImprovement,
Jewelry, Kitchen, Magazines, MP3Downloads, Music, MusicTracks,
OfficeProducts, OutdoorLiving, PCHardware, Photo, Shoes, Software,
SoftwareVideoGames, SportingGoods, Tools, Toys, VHS, Video, VideoGames,
Watches

	
exception amazonproduct.errors.ItemAlreadyInCart(*args, **kwargs)

	The item you specified, ???, is already in your cart.

Deprecated since version 0.2.6.

	
exception amazonproduct.errors.MissingClientTokenId(*args, **kwargs)

	Request must contain AWSAccessKeyId or X.509 certificate.

	
exception amazonproduct.errors.MissingParameters(*args, **kwargs)

	Your request is missing required parameters. Required parameters include
XXX.

	
exception amazonproduct.errors.NoExactMatchesFound(*args, **kwargs)

	We did not find any matches for your request.

	
exception amazonproduct.errors.NoSimilarityForASIN(*args, **kwargs)

	When you specify multiple items, it is possible for there to be no
intersection of similar items.

	
exception amazonproduct.errors.NotEnoughParameters(*args, **kwargs)

	Your request should have at least one parameter which you did not submit.

	
exception amazonproduct.errors.TooManyRequests(*args, **kwargs)

	You are submitting requests too quickly and your requests are being
throttled. If this is the case, you need to slow your request rate to one
request per second.

	
exception amazonproduct.errors.UnknownLocale(*args, **kwargs)

	Raised when unknown locale is specified.

 Copyright 2017-2009, Sebastian Rahlf.
 Last updated on Feb 05, 2017.
 Created using Sphinx 1.3.5.

 Navigation

 	
 next

 	
 previous |

 	python-amazon-product-api 0.3-dev documentation

Configuration

New in version 0.2.6.

There is a growing list of configuration options for the library, many of which
can be passed directly to the API constructor at initialisation. Some options,
such as credentials, can also be read from environment variables (e.g.
AWS_ACCESS_KEY and AWS_SECRET_ACCESS_KEY).

Using files

To use a config file, pass its path to the API:

import amazonproduct
api = amazonproduct.API(cfg='~/my-config-file')

If no path was specified, the API looks for configuration files in the following
locations and in the following order:

	/etc/amazon-product-api.cfg for site-wide settings that all users on
this machine will use

	~/.amazon-product-api for user-specific settings

The options are merged into a single, in-memory configuration that is available.

The following sections and options are currently recognized within the config
file.

	Credentials

	The Credentials section is used to specify the AWS credentials used for
all requests.

	access_key

	Your AWS access key

	secret_key

	Your AWS secret access key

	associate_tag

	Your AWS associate ID

Example:

[Credentials]
access_key = <your access key>
secret_key = <your secret key>
associate_tag = <your associate id>

Note

Stating the obvious: Your access key is not <your access
key> but something like 10RZZJBK6YBQASX213G2.

Using config dict

If you need to configure the API at runtime you can also pass the config values
as dict:

import amazonproduct
config = {
 'access_key': 'ABCDEFG1234X',
 'secret_key': 'Ydjkei78HdkffdklieAHDJWE3134',
 'associate_tag': 'redtoad-10',
 'locale': 'us'
}
api = amazonproduct.API(cfg=config)

Environment variables

You can also set the following environment variables:

	AWS_ACCESS_KEY

	Your AWS access key

	AWS_SECRET_ACCESS_KEY

	Your AWS secret access key

	AWS_ASSOCIATE_TAG

	Your AWS associate ID

	AWS_LOCALE

	Your API locale

Important

Environment variables will always take precedence over values
from config files but not from config dict!

Order of precedence

	Parameters specified by environment variables

	User-specific parameters from ~/.amazon-product-api

The following table gives an overview which values can be defined where:

	config file
	environment variable

	access_key
	AWS_ACCESS_KEY

	secret_key
	AWS_SECRET_ACCESS_KEY

	associate_tag
	AWS_ASSOCIATE_TAG

	locale
	AWS_LOCALE

 Copyright 2017-2009, Sebastian Rahlf.
 Last updated on Feb 05, 2017.
 Created using Sphinx 1.3.5.

 Navigation

 	
 next

 	
 previous |

 	python-amazon-product-api 0.3-dev documentation

More advanced uses

Using a different API version

Amazon releases a new API version every once in a while in order to add or
change features and operations. Usually, you won’t have to worry about this
because with each release of this wrapper the latest API version will be used
by default.

If you do want to change the API version used, however, you can simply specify
which one you like:

api = API(...)
api.VERSION = '2010-10-01'

Warning

As of Feb 21st, 2012 all API versions prior to 2011-08-01 will
no longer be supported!

Use your own XML parsing library

New in version 0.2.3.

You don’t need to use lxml.objectify. A custom
response processor can be defined using any mechanism you like. For instance,
here is one using xml.minidom:

import xml.dom.minidom
def minidom_response_parser(fp):
 root = xml.dom.minidom.parse(fp)
 # parse errors
 for error in root.getElementsByTagName('Error'):
 code = error.getElementsByTagName('Code')[0].firstChild.nodeValue
 msg = error.getElementsByTagName('Message')[0].firstChild.nodeValue
 raise AWSError(code, msg)
 return root

Now let's use this instead of the default one
api = API(AWS_KEY, SECRET_KEY, 'uk', processor=minidom_response_parser)
root = api.item_lookup('0718155157')
print root.toprettyxml()
...

Note

Make sure your response parser raises an AWSError with the appropriate
error code and message.

Caching responses

New in version 0.2.5.

Sometimes when developing or when it is foreseeable that the very same request
will be sent over and over again, it might be better to cache API responses from
Amazon for a short time in order to avoid going over you request limit.

 Copyright 2017-2009, Sebastian Rahlf.
 Last updated on Feb 05, 2017.
 Created using Sphinx 1.3.5.

 Navigation

 	
 next

 	
 previous |

 	python-amazon-product-api 0.3-dev documentation

Developer FAQ

Here is a growing collection of questions that pop up regularly.

I read the API docs but I can’t manage to get this to work

The XML structure returned by Amazon is sometimes not easy to understand. Try
the following:

from lxml import etree
api = API(locale='...')
results = api.call(Operation='...') # your API call
print etree.tostring(results, pretty_print=True)

It will print the XML response nicely formatted.

Which locale should I use and why is this important?

Amazon is a world-wide venture. Product Advertising API is as well.
Product Advertising API operates in six locales:

	CA (Canada)

	CN (China)

	DE (Germany)

	ES (Spain)

	FR (France)

	IT (Italy)

	JP (Japan)

	UK (United Kingdom)

	US (United States of Amerika)

Each of these locales is serviced by an Amazon web site that uses the local
language, local customs, and local formatting. For example, when you look at
the DE homepage for Amazon, you see the listings in German. If you purchased an
item, you would find the price in Euros, and, if you were to purchase a movie,
you would find that the movie rating would conform to the movie rating system
used in Germany.

Product Advertising API responses contain the same localized information. The
correct locale is determined by examining the endpoint in the request.

Can I use this wrapper on Google App Engine (GAE)?

This wrapper relies by default on lxml.objectify [http://codespeak.net/lxml/objectify.html] to parse the returned XML
responses from Amazon which is built with libxml, a C library. And this will
not work on GAE [http://code.google.com/p/googleappengine/issues/detail?id=18].

For the time being there is no solution that will work out of the box.
You can, however, use a different XML parser (see Use your own XML parsing library)!

I keep getting InvalidParameterValue errors. What am I doing wrong?

The Amazon webservice returns an InvalidParameterValue error if you enter a
wrong ISBN. Wrong, as it seems, can mean the format is wrong (too short) or
contains invalid characters (e.g. dashes “-”).

Surprisingly, wrong can even mean that you used the wrong locale! For
instance, you cannot retrieve data for an English book (ISBN 9780596158064)
from locale de or for a German book (ISBN 9783836214063) from locale
us - but using locale uk works for both!

Try your query again using a valid ISBN and play around with the locale. You
can set the locale at initialisation:

from amazonproduct import API
AWS_KEY = '...'
SECRET_KEY = '...'
api = API(AWS_KEY, SECRET_KEY, "uk")
root = api.item_lookup('9783836214063', IdType='ISBN', SearchIndex='Books')

Why yet another implementation?

There are a number of alternatives available:

	PyAmazon [http://www.josephson.org/projects/pyamazon/], originally written
by Mark Pilgrim, then taken over by Michael Josephson. Development seems to
have stalled, with the last release in August 2004.

	Kung Xi’s pyaws [http://pyaws.sf.net] forked pyamazon to support the then
most recent Amazon Web Service and give developers more control of the
incoming data. Sometime after version 0.2.0, development over at sourceforge
was dropped without warning and continued at http://trac2.assembla.com/pyaws
with version 0.3.0, which was released in May 2008.

This module seems to be the most widely used. It hasn’t been updated however
in quite some time. A fork of this project is maintained
here [http://bitbucket.org/johnpaulett/pyaws].

	In October 2008 David Jane started pyecs [http://code.google.com/p/pyecs/]
after stumbling accross pyamazon. He decided that “a new, more class and
iterator-oriented approach would be better.” However, it only supports a
subset. Last commit was in November 2008.

	There is a clever hack [http://jjinux.blogspot.com/2009/06/python-amazon-product-advertising-api.html]
using boto [http://code.google.com/p/boto/] to create the URL, although
this library is originally designed to allow communication with Amazon’s
cloud APIs.

So why write your own then? First and foremost, since August 15, 2009 all calls
to Amazon’s Product Advertising API must be authenticated using request
signatures. The afore mentioned libraries did not support this out of the box at
the time. And yes... writing something from scratch is always more appealing.

More recently I stumbled across another alternative:

	Dan Loewenherz’s bottlenose [http://pypi.python.org/pypi/bottlenose] makes
sending requests to Amazon as easy as

import bottlenose
amazon = bottlenose.Amazon("access_key_id", "secret_access_key")
response = amazon.ItemSearch(ItemId="0596520999", ResponseGroup="Images",
 SearchIndex="Books", IdType="ISBN")

It has a straight-forward API, is easy to use and supports all operations out
of the box. You only have to take care of processing the response. I must
steal some ideas from this module!

I found a bug! What do I do now?

You can do two things:

	File a bug report (but please look at the list of know issues [http://bitbucket.org/basti/python-amazon-product-api/issues/] before)

	Send an e-mail to the mailing list [http://groups.google.com/group/python-amazon-product-api-devel].

Any feedback is welcome!

 Copyright 2017-2009, Sebastian Rahlf.
 Last updated on Feb 05, 2017.
 Created using Sphinx 1.3.5.

 Navigation

 	
 next

 	
 previous |

 	python-amazon-product-api 0.3-dev documentation

How to contribute

Development happens at http://bitbucket.org/basti/python-amazon-product-api.

Contributions are always welcome. You can do this by

	filing bug reports,

	discussing new ideas on the mailing list [http://groups.google.com/group/python-amazon-product-api-devel] or

	sending me patches.

If you do the latter, please make sure that all the tests run successfully (see
also Running the Tests).

Setting up a development environment

What you will need to work on this module:

	lxml [http://lxml.de]

	pytest [http://pytest.org/] (>2.0)

	pytest-localserver [http://pypi.python.org/pypi/pytest-localserver]

	Sphinx [http://sphinx.pocoo.org/]

	tox [http://tox.testrun.org/] (optional)

It might be a good idea to install all of the above mentioned dependencies into
a virtualenv [http://www.virtualenv.org/] (I prefer to use virtualenvwrapper [http://www.doughellmann.com/projects/virtualenvwrapper/]).

Running the Tests

There are a large number of tests to check for inter-version and inter-locale
consistencies. The simplest way of running them is to run

python setup.py test

in the root directory. The tests require pytest [http://pytest.org/]. In order to check all
supported Python versions (currently 2.4 - 2.7), I use tox [http://tox.testrun.org/].

When adding new tests, you need to pass your credentials to the API. Have a look
at Configuration to see how to set it up. Your credentials will not be stored
in any files!

Note

Providing tests with your pull request will increase the chances of
your changes being accepted by a factor of one gazillion!

 Copyright 2017-2009, Sebastian Rahlf.
 Last updated on Feb 05, 2017.
 Created using Sphinx 1.3.5.

 Navigation

 	
 next

 	
 previous |

 	python-amazon-product-api 0.3-dev documentation

Changes

0.2.8 (2014-03-30)

	Fixed #31: Using generic error factory _e(), the original parsed XML can be
accessed in case of failure.

	Added InvalidAccount and InvalidSignature exceptions (thanks to Jannis
Gebauer)

0.2.7 (2013-10-08)

Small bugfix release!

	Examples fixed. Processors can now be processor instances again.

0.2.6 (2013-09-14) “Humperdinck”

	Supports API version 2011-08-01

	Config files added

	Almost total rewrite of processors backend. Will work now with elementtree
from stdlib, too.

	#26: Added endpoints for CN, ES and IT.

	Added RetryAPI to contrib package thanks to Jerry Ji.

	Documentation was overhauled.

	As of 2012-10-01 there are no more XSLT endpoints!

0.2.5 (2011-09-19) “Buttercup”

	Support for XSLT requests.

	Support for Associate tags thanks to Kilian Valkhof.

	New API versions 2010-12-01, 2010-11-01, 2010-10-01, 2010-09-01 and 2010-08-06
added.

	Fixed #16: Cannot install module under Python 2.4 without pycrypto being
installed first.

	tox [http://codespeak.net/tox/] (and hudson [http://jenkins.rotekroete.de/]) are now used for testing all supported Python versions
(which includes Python 2.7 now, too).

	Test server is replaced with pytest-localserver [http://pypi.python.org/pypi/pytest-localserver/].

	Fixed #18: Throttling no longer block CPU (Thanks to Benoit C).

	Added response-caching API (in amazonproduct.contrib.caching) to ease
development (Thanks to Dmitry Chaplinsky for the idea).

	API explicitly warns about deprecated operations.

Important

The following operations are deprecated since 15 July 2010 and
are now answered with a ‘410 Gone’ (and a DeprecatedOperation exception):

	CustomerContentLookup

	CustomerContentSearch

	Help

	ListLookup

	ListSearch

	TagLookup

	TransactionLookup

	VehiclePartLookup

	VehiclePartSearch

	VehicleSearch

	Added new exceptions InvalidClientTokenId and MissingClientTokenId.

	REQUESTS_PER_SECONDS can now be floats as well (e.g. 2500/3600.0).

	Added test options options --api-version, --locale and --refetch.

0.2.4.1 (2010-06-23)

Bugfix release! High time I get some continuous integration set up!

	Fixed #13: The module did not run under Python 2.4. Ooops!

0.2.4 (2010-06-13)

	Locale parameter is now required at initialisation.

before you could write
api = API(AWS_KEY, SECRET_KEY)

now you have to specify your locale
api = API(AWS_KEY, SECRET_KEY, 'de')

	Custom test server (tests.server.TestServer) added. It runs on localhost
and mimicks the Amazon webservice by replaying local XML files.

	Testing now supports multiple locales. Please not that you have to run
python setup.py test to run the unittests.

	ResultPaginator now also works with XPath expressions for attributes (Bug
reported Giacomo Lacava).

	Custom lookup for XML elements (during parsing) ensures that <ItemId/>
and <ASIN> are now always objectify.StringElement (Bug reported by
Brian Browning).

	Fixed #11: Module can now be installed library without lxml being installed
first.

	Regular expressions for parsing error messages can now deal with the Japanese
version.

Warning

The support for the Japanese locale (jp) is still very
experimental! A few error messages have still to be translated and the
functionality has to be confirmed. If you know Japanese, get in touch!

0.2.3 (2010-03-20)

	Tests run now for all API versions. Test cases can now be told which versions
to use (class attribute api_versions set to i.e. ['2009-10-01']).

	A custom AWS response processor can now be defined. For instance, here is one
using xml.minidom instead of lxml:

def minidom_response_parser(fp):
 root = parse(fp)
 # parse errors
 for error in root.getElementsByTagName('Error'):
 code = error.getElementsByTagName('Code')[0].firstChild.nodeValue
 msg = error.getElementsByTagName('Message')[0].firstChild.nodeValue
 raise AWSError(code, msg)
 return root
 api = API(AWS_KEY, SECRET_KEY, processor=minidom_response_parser)
 root = api.item_lookup('0718155157')
 print root.toprettyxml()
 # ...

	Fixed #3: Support for API Version 2009-11-01.

	Fixed #4: When using a bad parameter combination, an
InvalidParameterCombination exception is raised.

	Fixed #5: InvalidSearchIndex is raised when unknown SearchIndex is
specified.

	Fixed #7: Specifying API versions works now for more than just one test per
test case.

	The setup.py command has been empowered a bit with the following
additional options: test, build_sphinx, upload_sphinx.

	ResultPaginator attributes _get_current_page_numer,
_get_total_results and _get_total_page_numer are now private.

0.2.2 (2010-01-30)

	browse_node_lookup operation added.

	help operation added.

	list_lookup and list_search operations added.

	Default timeout for API calls is set to 5 sec.

	Test cases for correct parsing of XML responses added. Local XML files are
used for testing (if available) stored in separate directories
according to API version. These can be overwritten when config value
OVERWRITE_TESTS is set to True.

	InvalidItemId exception is replaced by more general
InvalidParameterValue exception.

0.2.1 (2009-11-20)

	Support for Python 2.4 added.

	Fixed #2: ResultPaginator now returns None if the XPath expression doesn’t
find the node it’s looking for.

0.2.0 (2009-11-07) “Westley”

This is the first public release. We’re now available via the Cheeseshop!
http://pypi.python.org/pypi/python-amazon-product-api

	The module is no longer a package. Please use import amazonproduct
(instead of import amazon.product) now.

	SimilarityLookup is now supported.

	Updated to support version 2009-10-01.

	Documentation added (made with http://sphinx.pocoo.org).

	New artwork.

0.1 (2009-09-30) “Fezzik”

Initial release.

 Copyright 2017-2009, Sebastian Rahlf.
 Last updated on Feb 05, 2017.
 Created using Sphinx 1.3.5.

 Navigation

 	
 previous

 	python-amazon-product-api 0.3-dev documentation

License

This module is release under the BSD License.

Copyright (c) 2009-2013, Sebastian Rahlf
All rights reserved.

Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions are met:

	Redistributions of source code must retain the above copyright notice, this
list of conditions and the following disclaimer.

	Redistributions in binary form must reproduce the above copyright notice,
this list of conditions and the following disclaimer in the documentation
and/or other materials provided with the distribution.

	Neither the name of Amazon Inc. nor the names of its contributors may
be used to endorse or promote products derived from this software without
specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS “AS IS” AND
ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

 Copyright 2017-2009, Sebastian Rahlf.
 Last updated on Feb 05, 2017.
 Created using Sphinx 1.3.5.

 _static/comment-bright.png

_static/file.png

_static/minus.png

_static/up-pressed.png

_static/ajax-loader.gif

search.html

 Navigation

 		python-amazon-product-api 0.3-dev documentation »

 Search

 Please activate JavaScript to enable the search
 functionality.

 From here you can search these documents. Enter your search
 words into the box below and click "search". Note that the search
 function will automatically search for all of the words. Pages
 containing fewer words won't appear in the result list.

 © Copyright 2017-2009, Sebastian Rahlf.
 Last updated on Feb 05, 2017.
 Created using Sphinx 1.3.5.

_static/banner.png
amazon
\—}Product Advertising API

_static/comment-close.png

_static/down.png

_static/logo.png

_static/up.png

_static/down-pressed.png

_static/comment.png

_static/plus.png

